

Lima: Lovely Irrigation Monitoring Application

Dec1717

Client: Dr. Ajay Nair, ISU Dept of Horticulture

Advisor: Dr. Manimaran Govindarasu, ISU Dept of ECpE

Team Members:

Daniel Albers: Key Idea Concept Holder

Sam Jackson: Webmaster

Seth Lightfoot: Key Idea Concept Holder

Sierra Lucht: Team Leader

Landon Woerdeman: Team Communication Leader

Outline

Project Description & Requirements

Existing System

Prototype I

Prototype II

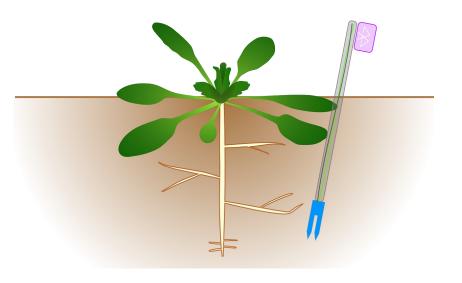
Testing

Results

Conclusions

Project Description

"The overarching goal of this project will be to develop a low cost smartphone application based irrigation monitoring system so that vegetable growers can efficiently manage their drip irrigation systems"


Requirements

Non-Functional

- Easy to understand and use
- Near to real time data response

Functional

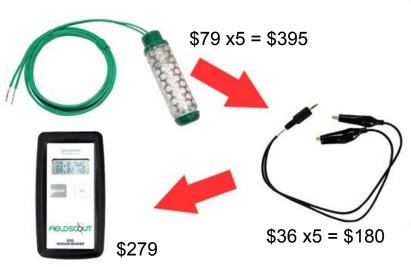
- Probe buried 18-24 inches in soil
- Sensor data accessible on smartphone
- Operable under growing weather conditions
- Adequate battery life

Existing System Cost

Sensor

\$139 x5 = \$695

Setup 1


5 Sensor Total: \$1,170

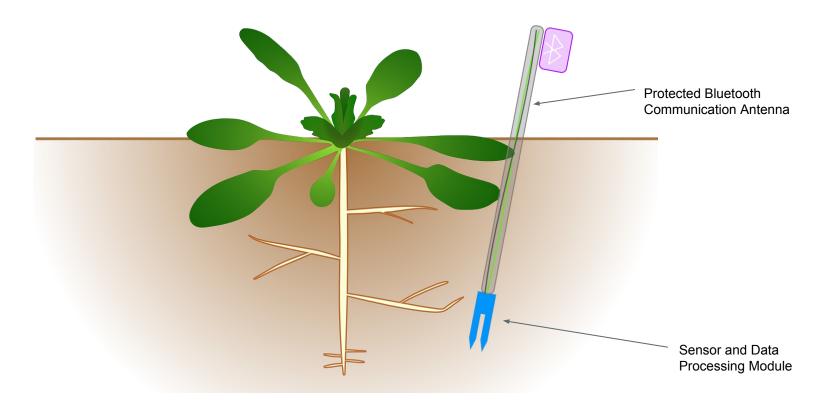
\$475

Data Logger

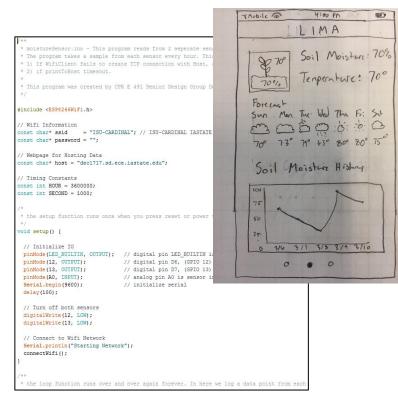
https://www.metergroup.com/environment/products/

Our Goal: < \$800.00

Watermark Soil Moisture sensor (Item 6450) requires Adapter (Item 6450FSADPT) for FieldScout Soil Sensor Reader connection.


Setup 2

5 Sensor Total: \$854


https://www.specmeters.com/soil-and-water/soil-moisture/soil-moisture-sensors/watermark-soil-moisture-sensors/

Prototype I - Conceptual Design

Prototype I - Software Conceptual Design

Key Attributes

User Facing - LIMA Application

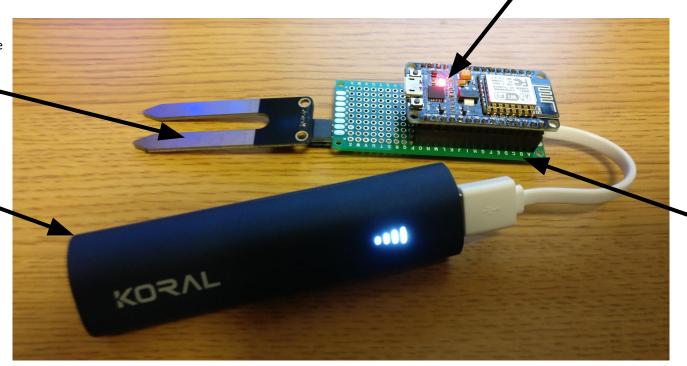
- Mobile Application
- Bluetooth v4.2
- Current Reading & History

Backend - Sensing Node

- C++/C Application
- Time Based Data Collection
- Bluetooth v4.2

Prototype I

Prototype I - Pricing


Item	Unit Price	Quantity	Sub-Total
Moisture Sensor	\$4.70	5	\$23.50
NodeMCU	\$8.79	5	\$43.95
Battery	\$4.80	5	\$24
Enclosure	\$.87	5	\$4.35
		Price Per System:	\$19.16
		5 System Total:	\$95.80

Prototype I - Hardware

Sensing - Variable Resistance Soil Moisture Sensor

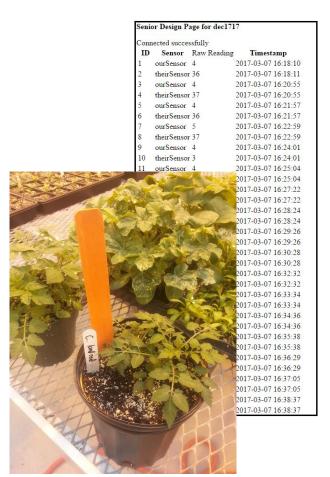
Power - KORAL USB Power Bank

Mounting - Protoboard

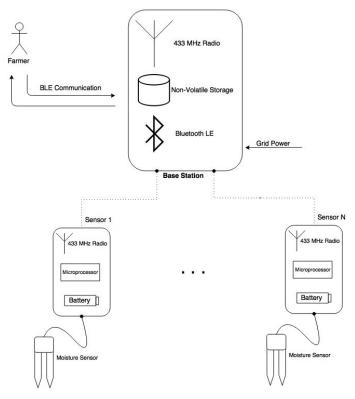
Processing - NodeMCU

Issues with Prototype I

Battery life


24 hour operation Limited data collection

Signal


Relied on WI-FI connection
Per-Node connection

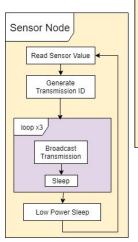
Sensor

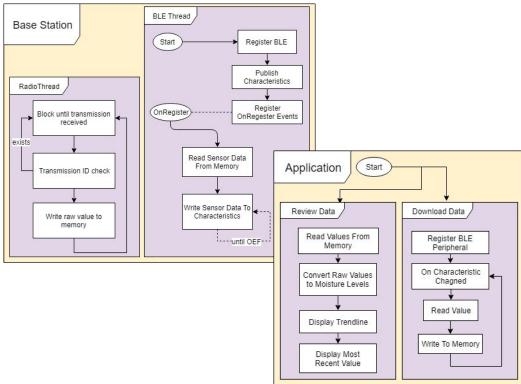
Sensor precision low Sensor accuracy low

Prototype II - Hardware Conceptual Design

Main differences from Prototype I:

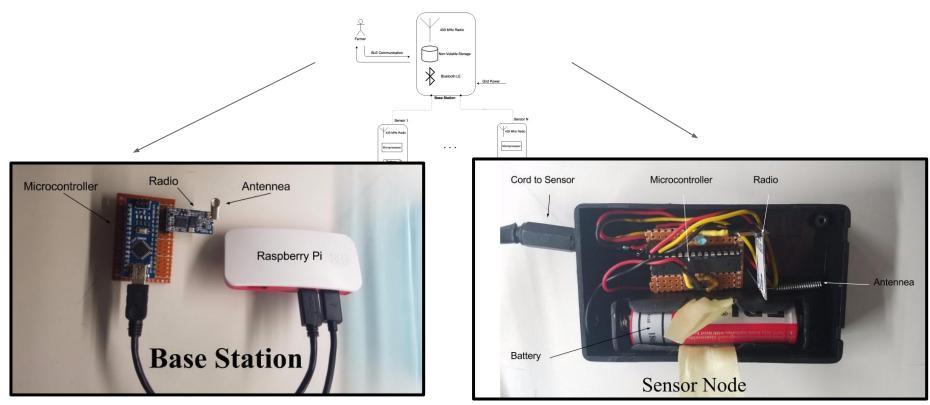
- Distributed Sensing
- 433MHz Radio
- 'Always On' Base Station
- Bluetooth Low Energy

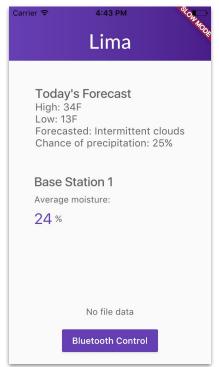

Prototype II - Software Conceptual Design

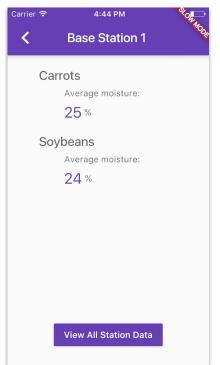

Application Differences

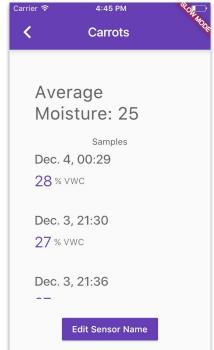
- Flutter Cross Platform Native SDK
- Bluetooth LE

New Embedded Software


- Dual Thread Base Station
- Multi-Transmission Nodes




Prototype II - Hardware Implementation



Prototype II - Software Implementation

Prototype II - Demo

Prototype II Pricing - New Sensors

Item	Unit Price	Quantity	Sub-Total
10HS Soil Sensor	\$139	5	\$695
Raspberry Pi Zero W	\$10	1	\$10
SD card	\$3	1	\$3
CH340G NANO	\$2.90	1	\$2.90
Arduino (IC)	\$2.18	5	\$10.90
Battery	\$1.50	5	\$7.5
Enclosure	\$.87	5	\$4.35
Radio	\$4.00	6	\$24
Add. Electrical Components	\$20	1	\$20
		Base Station Price:	\$20
		Price Per Node:	\$151.53
		5 System Total:	\$777.65

Prototype II

Prototype II Pricing - Existing Sensors

Item	Unit Price	Quantity	Sub-Total
Raspberry Pi Zero W	\$10	1	\$10
SD card	\$3	1	\$3
CH340G NANO	\$2.90	1	\$2.90
Arduino (IC)	\$2.18	5	\$10.90
Battery	\$1.50	5	\$7.5
Enclosure	\$.87	5	\$4.35
Radio	\$4.00	6	\$24
Add. Electrical Components	\$20	1	\$20
		Base Station Price:	\$20
		Price Per Node:	\$12.35
		5 System Total:	\$82.65

Testing

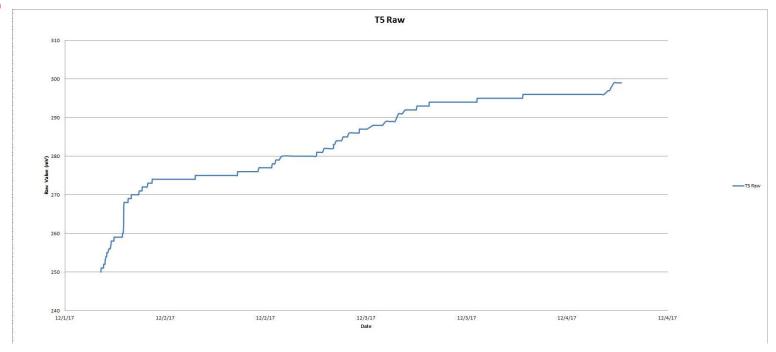
Testing

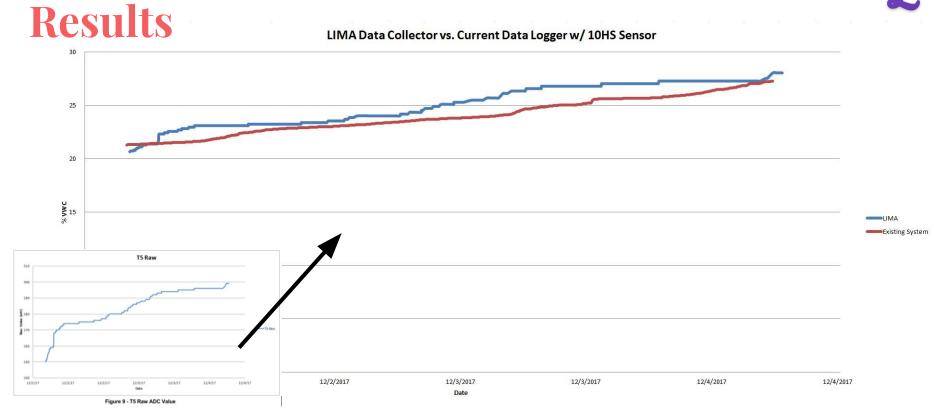
Sensor Reliability Test

Sparkfun vs. 10HS sensor 10HS much more reliable

Comparative Test

Existing system + 10HS sensor vs. new system + 10HS sensor Similar results




Results

- Greenhouse
- 4 days
- 2800 samples

ABS(2.589E-10 * mV^4 * -5.010E-7 * mV^3 + 3.523 E-4 * mV^2 - 9.135E-2*mV + 7.457)/2 + 20

L

Equation from sensor data sheet

Expanding

- Integration of control hardware
 - Turn on irrigation system when moisture levels are low
- Solar panels
 - Longer battery life
 - Environmentally friendly
- Power Management
 - Mosfet to control sensor's regulator
- Metrics
 - Identify trends
 - Make educated decisions about crops

Conclusions

- Similar results to existing system
- Lower cost
 - Total system cost
 - Easy expansion from five to ten sensors
- Mobile capabilities

Questions?

Initial Project Testing

Test Type	Status	
Sensor Testing	In Progress - Concludes in Summer	
Communication Testing	In Progress - Concludes in Summer	
Application Testing	Scheduled for Fall	
System Integration Testing	Scheduled for Fall	

Updated Project Testing

Test Type	Status
Sensor Testing	Completed
Communication Testing	Completed
Application Testing	Completed
System Integration Testing	Completed

Initial Goals for Fall 2017 Semester

Number	Deliverable	Date	Status
D1	Sensor Prototype	3-30-2017	Completed
D2	Application Prototype	4-28-2017	In Progress
D3	Fully Functioning Sensor and Application	11-10-2017	Planned
D4	Comprehensive Documentation	12-1-2017	Planned

Updated Goals for Fall 2017 Semester

Number	Deliverable	Date	Status
D1	Sensor Prototype	3-30-2017	Completed
D2	Application Prototype	4-28-2017	Completed
D3	Fully Functioning Sensor and Application	11-10-2017	Completed
D4	Comprehensive Documentation	12-1-2017	Completed

Risks

- Team members have limited knowledge about mobile development
 - Mitigation: Extensive research will be done into mobile development, and the team will begin early as to create a flexible schedule
- Team members have limited knowledge about irrigation and plant life
 - Mitigation: Extensive research will be done into irrigation, and all questions and issues will be promptly communicated with the client

Useful Links

10HS Moisture Sensor

https://www.metergroup.com/environment/products/

Watermark Moisture Sensor

https://www.specmeters.com/soil-and-water/soil-moisture-sensors/watermark-soil-moisture-sensors/

Sparkfun Moisture Sensor

https://www.sparkfun.com/products/13322

NodeMCU - Prototype I

http://www.nodemcu.com/index_en.html

Draw.IO - Diagrams

https://www.draw.io/

Raspberry Pi Zero W Info

https://www.raspberrypi.org/products/raspberry-pi-zero-w/

Wireless Radio

https://www.seeedstudio.com/433Mhz-Wireless-Serial-Transceiver-Module-1-Kilometer-p-1733.html

Flutter - Application

https://flutter.io/